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Abstract
A two-dimensional double-barrier nanoring under in-plane electric fields is
proposed to investigate field-controlled two-electron spectra and entanglements.
It has been found that changing the direction of the field can destroy the
symmetries of the wavefunctions and has great impact on the spectra. The angle
between the barriers, along with the intensity and direction of the field, can be
used for controlling the entanglements of both the ground and excited states.
The structure-dependent and field-controlled far-infrared spectroscopies are
useful in such investigations. It is helpful for manipulating the entanglements
of indistinguishable particles in nanostructures.

(Some figures in this article are in colour only in the electronic version)

In current theoretical and experimental investigations of solid-state quantum computation, an
important subject is to utilize the tunable structural parameters of nanostructures and external
fields to implement quantum manipulations. The indistinguishability of particles within the
nanoscale may have great effects in multi-qubit manipulations [1, 2] and the quantum encoding
scheme [3]. It is also a foundation for understanding the entanglement behaviours of charged
exciton states [5]. But relevant investigations are still very limited. To study the characters and
control of entanglement of identical particles in nanostructures [6], a two-dimensional double-
barrier nanoring is proposed and investigated in this paper.

There has been great attention paid to the electronic and optic properties of the ring-like
quantum dot, the so-called nanoring [7, 8]. The Aharonov–Bohm effect within the ringlike
structure has been widely studied from both theoretical and experimental perspectives [7, 9].
Besides these, it has been shown that additional structures, such as two barriers, can bring new
characters to the system [10]. To a certain extent, such a system can be viewed as coupled
quantum dots (CQDs) [11, 12], with a multiply connected domain. However, compared with
ordinary vertical or lateral CQDs, the shape, size and field-assisted control of the electronic
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Figure 1. The α-dependence of two-electron singlet (solid lines) and triplet (dashed lines) energy
levels in a double-barrier nanoring for R = 0.4a∗

B, W = 0.2a∗
B and V0 = 500 Ryd∗ with F = 0 (a)

and R = 2a∗
B, W = a∗

B and V0 = 20 Ryd∗ with F = 0 (b) and with F = 0.4F0 of γ = π/2 (c),
respectively. The ω-dependent FIR absorption coefficient (d) and (e) as a function of α (arbitrary
units with linear scales) corresponding to the parameters of (b) and (c). The dotted lines outline the
traces of the resonance energies. The darker the grey, the larger the absorption coefficient.

states and entanglements in a double-barrier nanoring may be more facilitated due to the
narrow barriers in the ring. We will explain how to modify the entanglements of two identical
electrons in such a system by choosing appropriate structural parameters and adjusting the
electric fields. Furthermore, spectral analysis is an important experimental technique in studies
of nanostructures. Like photoluminescence spectra, which are widely adopted in exciton [4]
and charged exciton systems [5], far-infrared spectroscopy, which has great application in the
studies of electronic properties in CQDs [13, 14] and nanorings [7], is used in the analysis of
two-electron entangled states and their control.

A two-dimensional nanoring with two identically sectorial barriers is schematically shown
in figure 1. The Hamiltonian of two electrons in such a system under an electric field (F) in
effective atomic units can be written as

H =
∑

i=1,2

(−∇2
i + Vci + Vgi + F · ri

) + 2

|r1 − r2| . (1)
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Vc is the hard wall potential, which is 0 in the ring and infinite elsewhere. The Vgi are the
barriers in the ring whose heights are V0 in the barriers and 0 elsewhere. The width of the
barrier is selected to be quite small to ensure that the wavefunction has maximally one angular
node inside each barrier. α, β and γ are the angle between two barriers, the flare angle of
each barrier and the angle between the direction of F and the x-axis, respectively. The energy
and length units are the effective Rydberg Ryd∗ = m∗

ee4/2h̄2(4πε0εr )
2 and the effective Bohr

radius a∗
B = 4πε0εr h̄2/m∗

ee2. The unit of F is F0 = Ryd∗/ea∗
B. For InAs/GaAs materials, for

example, Ryd∗ = 5.8 meV, a∗
B = 10 nm and F0 = 5.8 kV cm−1.

The eigenvalues and eigenfunctions of H can be solved by the exact diagonalization
method with the use of the eigenfunctions of an ideal nanoring without barriers as a set of
single-particle basis. Then the FIR absorption coefficient of circularly polarized light can be
calculated within the electronic dipole approximation [15].

The barriers separate the ring into spatial left and right segments: L for θ ∈ [π−(α/2), π+
(α/2)] and R for θ ∈ [−π + (α/2), π − (α/2)], respectively. Each eigenstate � of H can be
projected to the form

|�〉 =
3∑

µ,ν=0

Pµνc†
µc†

ν |0〉 (2)

where c†
µ(c†

ν) and cµ(cν), µ, ν = L ↑, L ↓, R ↑, R ↓, are fermionic creation and annihilation
operators. ↑ and ↓ stand for one-particle states with Sz = 1/2 and −1/2, respectively. Then
the von Neumann entropy can be used for quantifying the entanglements between two identical
electrons and obtained by

S = − Tr ρ log2 ρ (3)

where ρ = 2P P† is the reduced density matrix of a randomly chosen particle. It can be also
calculated from the explicit formula [16]:

S = 1 − x log2 x − (1 − x) log2(1 − x) (4)

where

x = 1
2

(
1 +

√
1 − η2

)
(5)

and

0 � η ≡ 8|P01 P23 − P02 P13 + P03 P12| � 1. (6)

For two identical particles, S = 1 and 2 correspond to the unentangled and maximum
entangled states [16–18], respectively. In our case, the spatial parts of the two-electron
eigenstates can be separated from the spin ones. It can be demonstrated that if the leading
component of the spatial part is an equal-weighted superposition of inter-segment components
(|L R〉 and |RL〉) or intra-segment ones (|L L〉 and |RR〉), and the spin part is a singlet or triplet
with Sz = 0, the entanglement will reach a maximum. The other two triplets with Sz = ±1 are
always unentangled, and we will not discuss them in this paper.

The α-dependent energy spectra of the nanorings with different sizes are shown in the left-
hand column of figure 1. It has been demonstrated that the single-particle spectra have similar
structure if the area of the ring is scaled to n times and V0 and F are scaled to V0/n and F/n3/2,
respectively [10]. However, with the same scale, the two-particle spectra strongly depend on
the size of the ring. This is because the Coulomb energy is more dominant than the single-
particle energy in a larger ring, but just the reverse is true in a smaller one. In the following
discussion on spectra and entanglements, we will take R = 2a∗

B, W = a∗
B and V0 = 20 Ryd∗,

which are reasonable values to be used.
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Figure 2. Energy levels (upper row) and entropies (middle row) of the first three singlets, and
ω-dependent FIR absorption coefficient (lower row) of the first several states with α = 1.69 as
functions of F with γ = 0 (left-hand column) and γ with F = 0.4F0 (right-hand column),
respectively.

There are crossings and anticrossings between different energy levels in the spectra. These
two different behaviours originate from the symmetries of the states. If the electric fields are
absent or applied along the x-axis, the Hamiltonian is mirror symmetric about the x-axis no
matter what the value of α is. Then the eigenstates should be either even or odd symmetric
about the same axis. The anticrossings imply the admixture of two states when changing
α, so they can only occur between states with the same symmetry. States with different
symmetries can only cross each other in order to preserve their respective symmetries. These
crossings and anticrossings may be identified by the FIR spectroscopies. The ω-dependent FIR
absorption coefficient as a function of α with the same condition in figure 1(b) is presented
in figure 1(d). As the ground state is always a singlet for any α, there are only resonance
energies corresponding to singlets. If there is a crossing (anticrossing) between two singlets in
the spectra, the corresponding FIR resonance energies will also have a crossing (anticrossing)
with the same α. An interesting feature of the spectroscopies is that the absorption coefficients
corresponding to certain states change gradually near a crossing, but have sharp variation and
exchange their intensities near an anticrossing (except the anticrossing between the ground state
and the second singlet). This is just the evidence of the admixture of two states in the vicinity
of an anticrossing.

Furthermore, if γ �= 0 or π , the eigenstates need not have certain mirror symmetries
and there will be no crossings in the spectra and FIR spectroscopy results which have been
shown in figures 1(c) and (e). Such an alternation will have great impact on the control of the
entanglements.

The anticrossings imply the admixture of the states and they accompany the remarkable
change of entanglement entropies. So it makes the control of entanglements easier to choose
the appropriate α where there is an anticrossing between the required states. Based on this
principle, we have chosen α = 1.69 in figure 2 to investigate the methods for controlling
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the entanglements of the first three singlets. The entropies of the states which are used for
quantifying the entanglements are calculated by equation (4). As is shown in the left-hand
column of figure 2, an electric field along the x-axis with quite a low intensity is enough to
modify the entanglements because there are just anticrossings between different states. As F
changes from 0 to 0.2, the admixture of the ground state and the second singlet makes their
entropies increase and decrease respectively. This is a process of admixture of the states with
leading components |RR〉 and |L R〉+|RL〉. There is also an anticrossing between the third and
fourth singlets (not shown here) and their admixture also results in the variation of the entropies.

Not only can adjusting the intensity modify the entanglements, but also changing the
direction of the field may achieve the same goal. In the right-hand column of figure 2, we show
the changes of the entropies during half a variation period of γ with F = 0.4F0. Compared
with adjusting the intensity of the field with γ = 0, changing γ with fixed F has the similar
effect on the entropy of the ground state. However, there are two extra anticrossings instead
of the two crossings between the second and third singlets. Combined with the other two
anticrossings in the spectra, the variations of their entropies are no longer monotonic in half a
period. In fact, the situation for the first two triplets is more apparent. In figure 1(b), it can
be imagined that their entropies are hardly modified if α is also chosen to be 1.69 since there
is only a crossing and they cannot mix with each other. However, as shown in figure 1(c), the
crossing has become an anticrossing when γ �= 0. This alternation will undoubtedly provide
the possibility to modify the entanglements more easily.

In all the cases discussed above, low intensity fields can control the entanglements
sensitively and avoid the breakdown of the device. All these features come from the proper
choice of α. It can be imagined that F has to be much larger if α is chosen to be close
to π . The F-dependent spectra with crossings and anticrossings can be also observed in
the FIR absorption spectroscopy results which have been presented in figure 2. Then the
corresponding relation between the FIR spectroscopy and the energy spectra can help to
confirm the positions of anticrossings and the choice of proper structural parameters in future
experimental investigations of solid quantum computation.

The three-dimensional diagram of the ground state’s and the fifth state’s entropies
calculated from equation (4), as functions of the structural and external fields parameters, are
plotted in figure 3. The values of α have been selected carefully according to the criteria
discussed above. For the ground state, the value of α should be near 1.7, where the two
segments of the ring are very unequal in size. This requirement is easy to meet in our scheme
but may be more difficult in CQD systems. An improper α will make the control of the
entanglement difficult or even impossible. For example, it can be seen in figure 3(c) that for
the fixed F = 0.2F0, adjusting γ cannot make the entropy higher than 1.2 if α is close to 1.5,
which is too small for the ground state. If a higher entanglement is required, the intensity of
the field has to be increased. It is also difficult to modify the entanglement of the ground state
if α is chosen too close to π , where the unentangled state is hard to obtain.

In contrast to the ground state, the value of α for the fifth singlet must be very close to
π to ensure that the inequality of the two segments is not very severe. It can be seen from
figures 1(b) and (c) that there are indeed anticrossings between the fifth and fourth singlets
near such α. Then adjusting the intensity or direction of the field can change the two electrons
from an unentangled to an almost maximum entangled state and vice versa. It can be seen in
figure 3 that the variation of the entropies of the ground state and the fifth singlet are different
in shape. The entropy of the ground state can be kept on a high level for a large range of the
parameters. In contrast, when the entanglement of the fifth singlet reaches the maximum, it
will fall off rapidly. These different behaviours indicate that the electric fields must be tuned
very accurately in the manipulation of the entanglement of the fifth singlet.
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Figure 3. The entropies of the ground state (left-hand column) and the fifth singlet (right-hand
column) as functions of α and F with γ = 0 ((a), (b)), α and γ with F = 0.2F0 (c) and F = 0.1F0

(d), and F and γ with α = 1.69 (e) and α = 3.04 (f), respectively.

In summary, we have proposed to employ a double-barrier nanoring to investigate two
identical electrons’ spectra and entanglements. It has been found that the α-dependent energy
spectra are remarkably affected by the size and the symmetry of the ring. In order to control the
entanglements more conveniently and sensitively, the value of α should be carefully selected
to be near an anticrossing of the required states. Then moderate in-plane electric fields can
be used for modifying the entanglements. In different ranges of α, the entanglements of both
the ground state and some excited states can be well controlled by F or γ . FIR absorption
spectroscopy can identify anticrossings and help to choose proper values for α, F and γ . These
results reveal some universal properties of entanglements in nanostructures and should be useful
in understanding the entanglements in the system of identical particles, such as electrons or
charged excitons in CQDs.
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